连接AM,
∵AB=AC,∠B=30°,
∴AM⊥BC,
∴AM=1/2AB=4,MB=CM=√3AM=4√3,
∵∠B=∠EMF=30°,
∴∠BME+∠BEM=∠BME+∠CMF=150°,
∴∠BEM=∠CEF,
又∠B=∠C,
∴ΔBEM∽ΔCMF,
∴BE/CM=BM/CF,
(8-X)/4√3=4√3/(AF+8),
AF=48/(8-X)-8=(8X-16)/(8-X),
在ΔAEF中,∠EAF=60°,
∴EF²=AE²+AF²-2AE*AFcos60°
=(8-X)²+(8X-16)²/(8-X)²-(8X-16)
Y=EF=√[(8-X)²+(8X-16)²/(8-X)²-(8X-16)]
(2