最佳答案:不一定,要验证左右是否为一正一负,若符号一致,则不是极值点
最佳答案:可导函数的极值点发生于导数由正变负,或由负变正的点上.所以一定为驻点.
最佳答案:对的呀.y=x^3,x=0是驻点,但不是极值点,没错呀极值点一定是驻点,不能用y=x^3这个例子,这个函数没有极值.
最佳答案:解题思路:通过举反例可得充分性不成立,而必要性成立,从而得出结论.由“函数f′(x0)=0”,不能推出“可导函数f(x)在点x=x0处取到极值”,例如f(x)=
最佳答案:设y=f(x)是一个单变量函数, 如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。这就是定义所以只要能求出导函数就有其极限点,而不是楼主
最佳答案:你没有明白导函数在某一点取值的几何意义,导函数在某一点取值的几何意义就是该点切线斜率值,而极值点的切线都是平行x轴的,所以该点斜率为零,我们在找极值点时就要令导
最佳答案:解题思路:结合极值的定义可知必要性成立,而充分性中除了要求f′(x0)=0外,还的要求在两侧有单调性的改变(或导函数有正负变化),通过反例可知充分性不成立.如y
最佳答案:所以判别式应该>=0,即4-24a>=0,解得a=(2)函数f(x)在x=1处取得极值,即f'(1)=0,所以a=-4恒成立的题目解题思路基本都转化为求极值问题
最佳答案:解题思路:由极值的定义知,函数在某点处有极值,则此处导数必为零,若导数为0时,此点左右两边的导数符号可能相同,故不一定是极值,由此可以得出结论,极值点处导数比较
最佳答案:这种“极值”需要排除的,只有在定义域内才有意义这样的结论说明函数在其定义域内极值无0点,因此函数是单调函数,没有极值
最佳答案:答案错,是必要不充分.由f'(x0) = 0 推不出极值点,因为有可能是拐点(说明不充分);f(x)在R上可导,可以说明极值点处一定有f'(x0) = 0(说明
最佳答案:问题应叙述为:函数在闭区间上都不可导.这是因为函数在闭区间的端点至多有单侧导数.(有的根本没有)即在左端点至多有右导数(△x→0+时),在右端点至多有左导数(△
最佳答案:你的题极度不完整...除了汉字和数字别的什么也看不到...在x0处取极值等价于:在x0某邻域内函数f(x)有定义,且在该邻域内x0左端及右端f'(x)异号,f(
最佳答案:函数f(x)在点x 0处取得极值则f′(x 0)=0,但f′(x 0)=0时,函数f(x)在点x 0处取得极值不恒成立,故函数f(x)在点x 0处取得极值的必要
最佳答案:1C再加上二阶导数不为0就是充要了2f'(x)=3x^2+6x-9=0x=1或x=-3f''(x)=6x+6f''(-3)