知识问答
最佳答案:题目似乎叙述不恰当,因为可导函数必连续,也就是说你要求证明一个导函数必然在某一点连续,导函数必然可积,可积函数的振幅和极限为0也就是说,对于任意一个a大于零,存
最佳答案:很简单,第一间断点分段函数就都是这样的特例,如:f(x)=x(x≠0) 1(x=0)这样的函数,在x=0左连续,右连续,但函数在x=0这个点不连续,这是第一间断
最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
最佳答案:可以存在,如函数:f(x,y) = 0,xy = 0;= 1,其它这里两个偏导都是0,但不连续.原因是偏导只与两个方向上的函数值有关,而连续是整体的性质.但如果
最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
最佳答案:不存在令 g(x)=f'(x),g(x)处处不连续,说明g(x)不Rimann可积.但由凑微分法,在任意区间[a,b]上∫g(x)dx = ∫f'(x)dx =
最佳答案:条件不足,无法判断一个函数在点x1存在导数,在x1的去心邻域内未必可导,从而导函数未必存在,何来导数连续?即使存在导函数,也未必连续例如:f(x)=x^2sin
最佳答案:导数(Derivative)是微积分中的重要基础概念.当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δ
最佳答案:首先函数可导但并没有说是函数连续,如果该函数不连续,即使区间上各处可导也可能不连续.
最佳答案:不一定.例子很多,比如f(x)在有理数的值为x^2,在无理数的值为0.可以验证在零点连续可导,并且这个函数只在零点是连续的.
最佳答案:解题思路:函数零点左右两边函数值的符号相反,根据函数在一个区间上两个端点的函数值的符号确定是否存在零点.由f(2)=lg2+2-3=lg2-1<0,f(3)=l
最佳答案:不能推出:一阶偏导数在该点也连续反例如下:f(x,y)=exp(x*y)/y^(3/2) (y!=0),f(x,0)=0则:df/dx=exp(x*y)/y^(