O是坐标原点,且OA⊥OB 有AB^2=OA^2+OB*2 且x1*x2+y1*y2=0
AB^2=x1^2+y1^2+x2^2+y2^2
圆C方程 [x-(x1+x2)/2]^2+[y-(y1+y2)/2]^2=(x1+x2)^2/4+(y1+y2)^2/4
=1/4*(x1^2+x2^2+y1^2+y2^2)+1/2*(x1x2+y1y2)
=1/4*(x1^2+x2^2+y1^2+y2^2)=1/4*AB^2
因此AB是圆的直径
2 圆心 ((x1+x2)/2,(y1+y2)/2)
直线2x-y=0的距离最小值为 2/根号5=|(x1+x2)-(y1+y2)/2|/根号5
|(x1+x2)-(y1+y2)/2|=2 [1]
y1=(1/2p)*x1^2 y2=(1/2p)*x2^2
又x1*x2+y1*y2=0
得 x1*x2=-4p^2
|x1+x2-(x1^2+x2^2)/4/p|=2
配方整理得 (x1+x2-2p)^2=8p-4p^2=4p(2-p)>=0
p