解题思路:(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;
(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.
(1)①如图,E点在F点的左侧,∵BE⊥CD,AF⊥CD,∠ACB=90°,
∴∠BEC=∠AFC=90°,
∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,
∴∠CBE=∠ACF,
在△BCE和△CAF中
∠EBC=∠ACF
∠BEC=∠AFC
BC=AC,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF-CE=BE-AF,
当E在F的右侧时,同理可证EF=AF-BE,
∴EF=|BE-AF|;
②∠α+∠ACB=180°时,①中两个结论仍然成立;
证明:∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,
∴∠CBE=∠ACF,
在△BCE和△CAF中
∠EBC=∠ACF
∠BEC=∠AFC
BC=AC,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CF-CE=BE-AF,
当E在F的右侧时,同理可证EF=AF-BE,
∴EF=|BE-AF|;
(2)EF=BE+AF.
理由是:∵∠BEC=∠CFA=∠a,∠a=∠BCA,
又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,
∴∠EBC+∠BCE=∠BCE+∠ACF,
∴∠EBC=∠ACF,
在△BEC和△CFA中,
∠EBC=∠FCA
∠BEC=∠CFA
BC=CA,
∴△BEC≌△CFA(AAS),
∴AF=CE,BE=CF,
∵EF=CE+CF,
∴EF=BE+AF.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的性质和判定的应用,本题比较典型,证明过程类似.