三道因式分解的题目.已知x+y=5,x2+y2 =13,求xy+2xy+xy的值.已知x+2x+y-6y+10=0,求x
2个回答

一题:我理解原题是x+y=5且x^2+y^2=13,求x^3y+2x^2y^2+xy值

x+y=5………………(1)

x^2+y^2=13……(2)

由(1)^2-(2)得

2xy=5*5-13=12

得xy=6

则x^3y+2x^2y^2+xy

=x^2*xy+2(xy)^2+xy

=x^2*6+2*6*6+6

=6x^2+78

由(1)得y=-x+5

代入(2)得

x^2+(-x+5)^2=13

2x^2-10x+12=0

x^2-5x+6=0

x=2或x=3

所以当x=2时

6x^2+78=102

当x=3时

6x^2+78=132

答x^3y+2x^2y^2+xy值为102或132

二题x^2+2x+y^2-6y+10=0

x^2+2x+1+y^2-6y+9=0

(x+1)^2+(y-3)^2=0

(因为任何平方数大于等于零

两个平方数和等于零则每个平方数都等于零)

x+1=0

y-3=0

所以x=-1

y=3

三题:x(x-1)-(x^2-y)+2=0求:1/2(x^2+y^2)-xy值

x(x-1)-(x^2-y)+2=0

化简得x-y=2

1/2(x^2+y^2)-xy

=1/2(x^2+y^2-2xy)

=1/2(x-y)^2

=1/2*2*2

=2