(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,C
1个回答

解题思路:根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;

根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AD+AE=BD+CE,所以BD=DE-CE.

(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,

∴∠BDA=∠AEC=90°,

∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°

∴∠ABD=∠CAE,

∵AB=AC,

在△ABD和△CAE中,

∠BDA=∠AEC

∠ABD=∠CAE

AB=AC,

∴△ABD≌△CAE(AAS),

∴BD=AE,AD=CE,

∵AE=AD+DE,

∴BD=DE+CE;

(2)BD=DE-CE;

∵∠BAC=90°,BD⊥AE,CE⊥AE,

∴∠BDA=∠AEC=90°,

∵AB=AC,

在△ABD和△CAE中,

∠BDA=∠AEC

∠ABD=∠CAE

AB=AC,

∴△ABD≌△CAE(AAS),

∴BD=AE,AD=CE,

∴AD+AE=BD+CE,

∵DE=BD+CE,

∴BD=DE-CE.

点评:

本题考点: 直角三角形全等的判定;全等三角形的性质.

考点点评: 此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS,SAS,AAS等.这种类型的题目经常考到,要注意掌握.