如图,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在AE的同侧,BD⊥AE于D,CE⊥AE
3个回答

1、证明:

∵BD⊥AE,CE⊥AE

∴∠ADB=∠AEC=90

∴∠BAD+∠ABD=90

∵∠BAC=90

∴∠BAD+∠CAE=180-∠BAC=90

∴∠ABD=∠CAE

∵AB=AC

∴△ABD≌△CAE (AAS)

∴AE=BD,AD=CE

∵AE+AD=DE

∴BD+CE=DE

2、CE+DE=BD

证明:

∵BD⊥AE,CE⊥AE

∴∠ADB=∠AEC=90

∴∠BAD+∠ABD=90

∵∠BAC=90

∴∠BAD+∠CAE=∠BAC=90

∴∠ABD=∠CAE

∵AB=AC

∴△ABD≌△CAE (AAS)

∴AE=BD,AD=CE

∵AD+DE=AE

∴CE+DE=BD

3、BD+DE=CE

证明:

∵BD⊥AE,CE⊥AE

∴∠ADB=∠AEC=90

∴∠BAD+∠ABD=90

∵∠BAC=90

∴∠BAD+∠CAE=180-∠BAC=90

∴∠ABD=∠CAE

∵AB=AC

∴△ABD≌△CAE (AAS)

∴AE=BD,AD=CE

∵AE+DE=AD

∴BD+DE=CE

数学辅导团解答了你的提问,