(2010•上海二模)已知数列{an}满足a1=a,a2=2,Sn是数列的前n项和,且Sn=n(an+3a1)2(n∈N
1个回答

解题思路:(1)由题设条件可知

S

1

a

1

+3

a

1

2

a

1

=2

a

1

,即

a

1

=0

.由此能够解得a=0.

(2)由题意可知,

S

n

n

a

n

2

,2

S

n

=n

a

n

(n∈

N

*

)

.所以2Sn-1=(n-1)an-1(n≥2).由此可知数列{an}的通项公式an=2(n-1)(n∈N*).

(3)由题设条件知

S

n

n

a

n

2

=n(n−1)(n∈

N

*

)

.由此可知Tn=t1+t2+…+tn=

3−

2

n+1

2

n+2

<3(n∈

N

*

)

.从而求得数列{Tn}的上渐近值是3.

(1)∵a1=a,a2=2,Sn=

n(an+3a1)

2(n∈N*),∴S1=

a1+3a1

2,a1=2a1,即a1=0.(2分)∴a=0.(3分)

(2)由(1)可知,Sn=

nan

2,2Sn=nan(n∈N*).

∴2Sn-1=(n-1)an-1(n≥2).

∴2(Sn-Sn-1)=nan-(n-1)an-1,2an=nan-(n-1)an-1,(n-2)an=(n-1)an-1.(5分)

an

n−1=

an−1

n−2(n≥3,n∈N*).(6分)

因此,

an

n−1=

an−1

n−2═

a2

1,an=2(n−1)(n≥2).(8分)

又a1=0,∴数列{an}的通项公式an=2(n-1)(n∈N*).(10分)

(3)由(2)有,Sn=

nan

2=n(n−1)(n∈N*).于是,tn=

Sn+2

Sn+1+

Sn+1

Sn+2−2

=

(n+2)(n+1)

(n+1)n+

(n+1)n

(n+2)(n+1)−2

=

2

n−

2

n+2(n∈N*).(12分)

∴Tn=t1+t2+…+tn

=(

2

1−

2

3)+(

2

2−

点评:

本题考点: 数列递推式;极限及其运算;数列的求和.

考点点评: 本题考查数列的综合运用,解题时要注意计算能力的培养.