.已知正方形ABCD中,AB= 5,E是直线BC上的一点,联结AE,过点E作EF⊥AE,交直线CD于点F.
1个回答

(1)

EF⊥AE,所以∠BAE=∠CEF,△BAE∽△CEF

对应边成比例:CF/BE=CE/AB=(BC-BE)/AB

即:y/x=(5-x)/5

y = (-1/5)x²+x

所以,y关于x的函数解析式为:

y = (-1/5)x²+x

其定义域为:x∈(0,5)

y = (-1/5)x²+x

= (-1/5)(x-5/2)²+5/4

当x=5/2时,y最大,即CF最长,此时y=5/4

(2)

CF=6/5时,

(-1/5)x²+x = 6/5

解得,x=2或x=3

tan EAF

= EF/AE

= √[(BC-x)²+y²] / √(AB²+x²)

= √[(5-x)²+y²] / √(5²+x²)

当 x=2时

tan EAF

= √[(5-2)²+(6/5)²] / √(5²+2²) = (√111/435)

当 x=3时

tan EAF

= √[(5-3)²+(6/5)²] / √(5²+3²) = (√86/465)