在三角形abc中,∠b等于60°,△abc角平分线ad,ce交于点O,求证oe等于od
1个回答

证明:连接OB,过点O作OM⊥AB于M,ON⊥BC于N

∵∠ABC=60°

∴∠BAC+∠ACB=180-∠ABC=120°

∵AD平分∠BAC,CE平分∠ACB

∴∠OAC=∠BAC/2,∠OCA=∠ACB/2

∴∠AOC=180-(∠OAC+∠OCA)=180-(∠BAC+∠ACB)/2=120°

∴∠DOE=∠AOC=120°

∴∠ABC+∠DOE=180°

∵∠ODB+∠OEB+∠ABC+∠DOE=180°

∴∠ODB+∠OEB=180°

∵∠OEB+∠OEA=180°

∴∠OEA=∠ODB

又∵AD平分∠BAC,CE平分∠ACB

∴O是△ABC角平分线交点

∴OB平分∠ABC

∵OM⊥AB,ON⊥BC

∴OM=ON,∠OME=∠OND=90°

∴△OME≌△OND (AAS)

∴OE=OD