设椭圆方程x^2/a^2+y^2/b^2=1
右焦点F1(c,0)
则圆的方程:(x-c)^2+y^2=r^2(r为圆的半径)
该圆过椭圆中心,则有:c^2=r^2,c=r
圆的方程变为:(x-c)^2+y^2=c^2
P点是椭圆和圆的交点,PF2直线与圆相切,F2(-c,0)
因为F1F2=2C,PF1=c
所以PF2与X轴的夹角=30度
P的一个纵坐标=c√3/2
过y=c√3/2的PF2的直线方程y=x√3/3+m
代入F2(-c,0),m=c√3/3
y=(√3/3)(x+c),代入y=c√3/2得到P点的横坐标
x=c/2
P(c/2,c√3/2)满足椭圆方程
b^2c^2/4+3a^2c^2/4=a^2b^2
又,b^2=a^2-c^2
所以,a^2c^2-c^4+3a^2c^2=4a^2(a^2-c^2)
4a^2c^2-c^4=4a^4-4a^2c^2
4e^2-e^4=4-4e^2
e^4-8e^2+4=0
e^2=[8±√(64-4*4)]/2=(√3±1)^2
因为,0