(2014•滨州二模)在已知数列{an}中,a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n为正
1个回答

解题思路:(Ⅰ)由已知条件得

a

n+1

+1=(

a

n

+1

)

2

,两边取对数,得lg(an+1+1)=2lg(an+1),由此能证明数列{lg(an+1)}是以1为首项,以2为公比的等比数列.

(Ⅱ)由(Ⅰ)知

lg(a

n

+1)=

2

n−1

,从而lgTn=lg(a1+1)+lg(a2+1)+…+lg(an+1),由此求出lgTn=2n-1.

(Ⅲ)由Cn=

2

n

(

2

n

−1)(

2

n+1

−1)

=

1

2

n

−1

1

2

n+1

−1

,利用裂项求和法能求出数列{Cn}的前n项和.

(Ⅰ)证明:∵数列{an}中,a1=9,点(an,an+1)在函数f(x)=x2+2x的图象上,

∴an+1=an2+2an,∴an+1+1=(an+1)2,

对an+1+1=(an+1)2两边取对数,得lg(an+1+1)=2lg(an+1),

∵a1=9,∴lg(a1+1)=lg10=1,

∴数列{lg(an+1)}是以1为首项,以2为公比的等比数列.

(Ⅱ)由(Ⅰ)知lg(an+1)=2n−1,

Tn=(a1+1)…(an+1),

∴lgTn=lg(a1+1)(a2+1)…(an+1)

=lg(a1+1)+lg(a2+1)+…+lg(an+1)

=20+21+22+…+2n-1

=

1−2n

1−2=2n-1.

(Ⅲ)证明:Cn=

lgTn+1

[lg(an+1+1)−1][lg(an+2+1)−1]

=

2n

(2n−1)(2n+1−1)=[1

2n−1−

1

2n+1−1,

Sn=(

1/2−1−

1

22−1])+(

1

22−1−

1

23−1)+(

1

23−1−

1

24−1)+…+(

1

2n−1−

1

2n+1−1)

=1-

1

2n+1−1<1.

∴Sn<1.

点评:

本题考点: 数列与函数的综合;数列的求和.

考点点评: 本题考查等比数列的证明,考查数列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.