已知a1=2,点(an,an+1)在函数f(x)=x^2+2x的图象上,其中n=1,2,3…
1个回答

已知a1=2,点(an,a(n+1))在函数f(x)=x^2+2x的图像上,其中n=1,2,...,

则f(an)=(an)^2+2(an)=a(n+1),

显然an>0,a(n+1)=an(an+2).

bn=(1/an)+[1/a(n+2)]

数列{bn}的前n项和Sn

Sn=b1+b2+b3+.+bn=

=(1/a1+1/a3)+(1/a2+1/a4)+(1/a3+1/a5)+...+[1/an+1/a(n+2)]=

={1/a1+1/[(a2)*(a2+2)]}+{1/[(a1)*(a1+2)]+1/[(a3)*(a3+2)]}+.+{1/[(a(n-1))^2+2(a(n-1))]+1/[(a(n+1))^2+2(a(n+1))]},

因为 1/[(a1)*(a1+2)]=(1/2)[1/(a1)-1/(a3)],

1/[(a2)*(a2+2)]=(1/2)[1/(a2)-1/(a4)],

1/[(a3)*(a3+2)]=(1/2)[1/(a3)-1/(a5)],

.,

1/[(a(n-1))*(a(n-1)+2)]=(1/2)[1/(a(n-1)-1/(a(n+1))],

1/[(an))*(an+2)]=(1/2)[1/(an)-1/(a(n+2))],

1/[(a(n+1))*(a(n+1)+2)]=(1/2)[1/(a(n+1)-1/(a(n+3))],

所以,

Sn=1/a1+(1/2)[1/(a2)-1/(a4)]+(1/2)[1/(a1)-1/(a3)]+

+(1/2)[1/(a3)-1/(a5)]+.+(1/2)[1/(a(n-1)-1/(a(n+1))]+

+(1/2)[1/(a(n+1)-1/(a(n+1))]

=(3/2)(1/a1)+(1/2)(1/a2)-(1/2)[1/(a(n+3))]

=(3/2)(1/2)+(1/2)(1/8)-(1/2)[1/(a(n+3))]

=13/16-(1/2)[1/(a(n+3))]