如图,△ABC中,D,E分别是BC,AC的中点,设AD与BE相交于G,求证:AG:GD=BG:GE=2:1.
1个回答

解题思路:根据两个点分别是三角形两条边的中点,得到这条线是三角形的中位线,两条线之间是平行关系,得到两个三角形相似,对应边成比例,又根据中位线得到比值.

证明:连接DE,

∵D,E分别是BC,AC的中点,

∴DE∥AB,DE=[1/2]AB

∴△DEG∽△ABG,

∴AG:GD=BG:GE=AB:DE=2:1

点评:

本题考点: 相似三角形的判定.

考点点评: 本题考查三角形的中位线定理,考查三角形相似的判定,考查相似三角形的对应边成比例,本题是一个基础题,考查的知识点比较简单.