由于f(x)=f′(1)ex-1-f(0)x+ 12x2,则f′(x)=f′(1)ex-1-f(0)+x,
令x=1得,f(0)=1,则f(x)=f′(1)ex-1-x+ 12x2,
∴f(0)=f′(1)e-1 则f′(1)=e,
得到f(x)=ex-x+ 12x2,则g(x)=f′(x)=ex-1+x,
g′(x)=ex+1>0,所以y=g(x)在x∈R上单调递增,
则f′(x)>0=f′(0)x>0,f′(x)<0=f′(0)x<0,
所以f(x)=ex-x+ 12x2的单调递增区间为(0,+∞),单调递减区间为(-∞,0).