最佳答案:解题思路:先利用三角函数的和差角公式展开曲线C的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代
最佳答案:解题思路:由条件利用用点斜式求直线的直角坐标方程,再把直角坐标方程化为极坐标方程.直线θ=[π/3](ρ∈R)的直角坐标方程为y=3x,故所求直线的斜率为-33
最佳答案:解题思路:由条件利用用点斜式求直线的直角坐标方程,再把直角坐标方程化为极坐标方程.直线θ=[π/3](ρ∈R)的直角坐标方程为y=3x,故所求直线的斜率为-33
最佳答案:p(8,π/6)直角坐标x=8cosπ/6=4√3y=8sinπ/6=4∴直线的直角坐标方程为y-4=tanπ/3(x-4√3)即y=√3x-8化成极坐标方程p
最佳答案:因为极坐标中ρsinθ=yρcosθ=x所以这题方程是y=4那个点是(1,根号3)到直线的距离自然就是4-根号3.
最佳答案:角等于45度,斜率为(二分之根号二).方程为y=(二分之根号二)x
最佳答案:第一个就是极角a=π/3或者等于-2π/3第二个就是直线x=1,所以就是pcosa=1就是方程
最佳答案:解题思路:(1)设极点为O,由该圆的极坐标方程为ρ=4,知该圆的半径为4,又直线l被该圆截得的弦长|AB|为4,所以∠AOB=60°,∴极点到直线l的距离为d=
最佳答案:解题思路:先将极坐标方程化成直角坐标方程,求出满足条件的圆的方程,再将普通方程化成极坐标方程即可.∵直线l的极坐标方程是pcosθ-2=0∴直线l的普通方程为x
最佳答案:解题思路:先将极坐标方程化成直角坐标方程,求出满足条件的圆的方程,再将普通方程化成极坐标方程即可.∵直线l的极坐标方程是pcosθ-2=0∴直线l的普通方程为x
最佳答案:先算极点到直线距离,d=根号(ρ^2-(|AB|/2)^2)=2根号3然后 ρCosθ=+2根号3 或 ρCosθ=-2根号3 就是所求方程
最佳答案:由已知得圆经过原点O及点A(-√3,-1),圆心在y轴上OA的垂直平分线方程为y+1/2=-√3(x+√3/2)令x=0,求得 y=-2,故圆心为(0,-2),
最佳答案:化为直角坐标方程圆C:ρ=2sinθ两边同时乘以ρ得ρ²=2ρsinθ代入ρ²=x²+y²、ρsinθ=y得x²+y²=2y即x²+(y-1)²=1直线θ=π/
最佳答案:设M(ρ,θ)(ρ≥0)为直线上除点A以外的任意一点,连接OM,OA.在Rt△OMA中,OA=OM·cos∠AOM2=ρcos(θ-π/3)即ρ(cosθ+√3
最佳答案:圆C: ρ=6cos(θ-π3 ) 化为直角坐标方程.∵ ρ=6cos(θ-π3 )∴ ρ=3cosθ+33 sinθ∴ ρ 2 =3ρcosθ+33 ρsi
最佳答案:圆C:ρ=6cos(θ−π3)化为直角坐标方程.∵ρ=6cos(θ−π3)∴ρ=3cosθ+33 sinθ∴ρ2=3ρcosθ+33ρsinθ∴x2+y2=3x
最佳答案:答案有误,你的思路是对的,但是结果对不对我就不知道了,答案坑定不对、
最佳答案:pcosA=4表示直线x=4,则(2,π/3)到l的距离为|2cos(π/3)-4|=3
最佳答案:ρcosθ=5所以,直线l的直角坐标方程是x=5点A(-2,π/2)的直角坐标为(-2cosπ/2,-2sinπ/2)=(0,-2)所以点A到直线l的距离是|0
最佳答案:解题思路:先利用直角坐标与极坐标间的关系,将直线l的方程为ρsinθ=3化成直角坐标系,再利用直角坐标方程中点到直线的距离公式求解即可.∵ρsinθ=3,∴它的