最佳答案:你提出的问题是一个大家经常犯的逻辑错误.这两个说法是不等价的.第二种说法有逻辑矛盾,因为如果这点导数都不存在,那么就不能求,你不能求出以后说它不存在.否则,当初
最佳答案:用文字给你描述一下,函数在该点可导则在该点的左右导数存在、相等且等于在该点的导数值.不妨设这个极值点为极小值点,则左导数依定义可知是小于等于0的(极限的保号性)
最佳答案:对于 任意 ε>0,存在δ 使得可以找到一个A符合|[(f(x0+δ)-f(x0))/δ]- A|
最佳答案:可导性都是用导数定义判断的。有不是用导数定义判断的吗?
最佳答案:这种“极值”需要排除的,只有在定义域内才有意义这样的结论说明函数在其定义域内极值无0点,因此函数是单调函数,没有极值
最佳答案:(1)初等函数在其定义区间内必可导,未必是正确的.如函数f(x) = |x| = √(x^2)是定义在 R 上的初等函数,但其在 x = 0 不可导.(2)若曲
最佳答案:导函数有第二类间断点并不表示该点函数不可导,而是在该点如a处:lim{x->a}f'(x)≠f'(a)且导函数的左右极限f'(a-0)与f'(a+0)至少有一个
最佳答案:楼上几位说的都存在不同程度的问题.楼上说的在概念上有问题,例子也给举错了,y = |x| 在 (-1,0]上定义时,在x = 0处的左导数是存在的,就等于-1,
最佳答案:y=f(x),f(-x)=f(x),f'(-x)=-f'(x)=f'(x),y'=f'(x)是奇函数,-f'(0)=f'(-0)=f'(0),f'(0)=0,且
最佳答案:这个其实要从多元函数极限的定义来看:在极限的定义中,并不要求函数在P点的邻域内有定义,在点X→P的过程中,只需要X的值取在P的邻域与函数定义域的交集中即可,从这
最佳答案:这个其实要从多元函数极限的定义来看:在极限的定义中,并不要求函数在P点的邻域内有定义,在点X→P的过程中,只需要X的值取在P的邻域与函数定义域的交集中即可,从这
最佳答案:在讨论分段函数在分界点处的可导性时,必须用左右导数的定义来判别.求分段函数的导数时,除了在分界点处的导数用导数定义求之外,其余点仍按初等函数的求导公式即可求得.
最佳答案:函数可导则函数一定连续,例子中的函数是连续的(左右极限存在且相等),则再根据定义或左右导数存在且相等判断该函数在0点可导。
最佳答案:(h->0) lim [ f(x0+h) - f(x0)] / h 存在和(h->0) lim [ f(x0+h) - f(x0-h) ] / h存在这两个又不
最佳答案:②③④.因为①动点到两定点的距离之和为4,则点的轨迹为线段,错误。②设定义在上的可导函数满足,,则一定成立;成立③展开式中,含0 项的系数为30;成立④若1 ,
最佳答案:关于导数的一个问题20 - 离问题结束还有 14 天 23 小时在计算分段函数的函数的可导性时,我们都是用的导数定义做的但是我发现很多时候直接把分段函数除了分段
最佳答案:有定义未必可导,你要自己用导数定义式来求端点处的导数是否存在,如分段函数f(x)=-x,x=0
最佳答案:首先肯定是不矛盾的f(x)=sin x/x 在x=0是无意义的那么F'(0)≠f(0) (f(0)无意义)但F'(0)确实有时存在的F'(x)在0点不连续 就不