知识问答
最佳答案:若函数f(x)在定义域内一点x0满足x趋于x0时的f(x)的极限=f(x0),则称f(x)在该点连续.至于证明函数的连续性,就是使用这个定义证明.其实,真正用到
最佳答案:如果能用连续函数的介值定理的话,可以这样证:用反证法,假设f连续.则首先注意到f是一一对应:对于任意实数x、y,f(x)=f(y) => -x = f(f(x)
最佳答案:先用定义求出该点的偏导数值c,再用求导公式求出不在该点时的偏导数fx(x,y),最后求fx(,x,y)当(x,y)趋于该点时的极限,如果limfx(x,y)=c
最佳答案:是在【变上限的定积分】也叫做“【积分上限的函数】及其导数”这部分内容中,有一个关于【积分上限的函数的导数的定理结论】简述如下,具体详细的可看书上的.【如果函数f
最佳答案:若实数不连续,则存在a、b是相邻的两个实数,则(a+b)/2也为实数,但它介于a、b之间,所以a、b不相邻.故实数连续回答者:hyl510 - 见习魔法师 二级