最佳答案:解题思路:根据题意,由于圆的参数方程为(为参数),那么额控制圆心为(0,1),半径为1,圆的极坐方程为,可知圆心为(0,2)半径为2,那么利用圆心距和半径的关系
最佳答案:极坐标系的解法见LS,对高中生来说不太好理解.直角坐标系的解法如下:两个坐标系的转化方程为 x=rcosθ,y=rsinθ 牢记这一点就可以.那么转成直角坐标系
最佳答案:解题思路:在对应的直角坐标系中,求出圆的直角坐标方程,再依据x=ρcosθ,y=ρsinθ,把直角坐标方程化为极坐标方程.在对应的直角坐标系中,圆心的坐标为(c
最佳答案:解题思路:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再将此距离加上半径,即为所求.以极点为坐标原点,极轴为x轴,建立平面直角坐标系,易得圆C的直角坐标
最佳答案:(I),, …………(2分),…………(3分)即,.…………(5分)(II)方法1:直线上的点向圆 C 引切线长是,…………(8分)∴直线上的点向圆 C 引的切
最佳答案:解题思路:先在直角坐标系中算出圆的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出其极坐标方程即可.圆
最佳答案:解题思路:先在直角坐标系中算出圆的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出其极坐标方程即可.圆
最佳答案:解题思路:先在直角坐标系中算出圆的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出其极坐标方程即可.圆
最佳答案:有四个切点,分别在直角坐标系中的(1,1)(1,-1)(-1,-1)(-1,1)四点
最佳答案:(I)圆的直角坐标方程:(+=1,圆心坐标为C,ρ==1,∴圆心C在第三象限,θ=,∴圆心极坐标为(1,);(II)∵圆C上点到直线l的最大距离d max等于圆
最佳答案:解题思路:(Ⅰ)先设圆上任一点坐标为(ρ,θ),由余弦定理得出关于ρ,θ的关系式,即为所求圆的极坐标方程;(Ⅱ)设Q(x,y)则P(2x,2y),根据P在圆上,
最佳答案:解题思路:由题意画出图形,利用圆周角是直角,直接求出所求圆的方程.由题意可知,圆上的点设为(ρ,θ)所以所求圆心的极坐标为C(3,[π/6]),半径为3的圆的极
最佳答案:圆C的普通方程为,直线l的普通方程为,因为圆心(1,0)到直线l的距离为所以圆上点到直线l的最短距离为d-r=.
最佳答案:圆ρ=2 即x 2+y 2=4,圆心为(0,0),半径等于2.直线 ρsin(θ+π6 ) =3即3 ρsinθ+ρcosθ=6 即3 y+x-6=0,圆心到直
最佳答案:由ρ=2cosθ⇒ρ 2=2ρcosθ⇒x 2+y 2-2x=0⇒(x-1) 2+y 2=1,ρcosθ-2ρsinθ+7=0⇒x-2y+7=0,∴圆心到直线距
最佳答案:解题思路:(1)利用三角函数中的平方关系消去参数θ,将圆锥曲线化为普通方程,从而求出其焦点坐标,再利用直线的斜率求得直线L的倾斜角,最后利用直线的参数方程形式,
最佳答案:解题思路:把极坐标方程化为直角坐标方程,求出所求直线的斜率和C的坐标,点斜式求得直线的方程,再化为极坐标方程.圆C:ρ=2cosθ 即(x-1)2+y2=1,故
最佳答案:1.2.x=pcosa,y=psina带进去就可以了3.最小值=圆心到直线的距离-圆的半径
最佳答案:解题思路:由题意,设C(ρ,θ),则AC=ρ,∠CAB=θ,根据AB是半径为1的圆的一条直径,即可得圆的方程为ρ=2cosθ,P随着C的运动而运动,而C在圆上动
最佳答案:解题思路:(1)设极点为O,由该圆的极坐标方程为ρ=4,知该圆的半径为4,又直线l被该圆截得的弦长|AB|为4,所以∠AOB=60°,∴极点到直线l的距离为d=