已知,图①中,P是三角形ABC中角B和角C的平分线的交点;图②中,P是三角形ABC中角B的平分线与三角形ABC的外角角A
1个回答

图①中,∠P=90°+½∠A.

证明:在△BPC中∠P=180°-½﹙∠A BC+∠ACB﹚=180º﹣½﹙180°-∠A﹚=90°+∠A.

图②中,∠P=½∠A.

证明:在△BPC中,

∠P=180°-½﹙∠ABC+ACE﹚-∠ACB

= 180°-½[∠ABC+﹙∠ABC+∠A﹚]-﹙180°-∠ABC-∠A﹚

=180°-½[2∠ABC+∠A]﹣180°+∠ABC+∠A

=180°-∠ABC-½∠A﹣180°+∠ABC+∠A

=½∠A.

图③中,∠P=90°-½∠A

证明:在△BPC中,

∠P= 180°-½﹙∠FBC+∠ECB﹚= 180°-½﹙180°-∠ABC+180°-∠ACB﹚

=180°-½[360°-﹙∠ABC+∠ACB﹚]

=180°-½[360°-﹙180°-∠A﹚]

=180°-½[180°+∠A﹚]

=90-½∠A﹚