利用柱面坐标系求三重积分z=x^2+y^2 z=2y.求∫∫∫Zdv
1个回答

该立体投影到xoy面为x²+y²=2y,即Dxy:x²+(y-1)²=1,其极坐标方程为:r=2sinθ

∫∫∫zdv

=∫∫ (∫[0--->2y]zrdz) drdθ

=∫∫ (∫[0--->2rsinθ]zrdz) drdθ

=1/2∫∫ z²r |[0--->2rsinθ] drdθ

=2∫∫ r³sin²θ drdθ

=2∫[0--->π]∫[0--->2sinθ] r³sin²θ drdθ

=1/2∫[0--->π] r⁴sin²θ |[0--->2sinθ] dθ

=8∫[0--->π] sin⁶θ dθ

=∫[0--->π] (1-cos2θ)³ dθ

=∫[0--->π] (1-3cos2θ+3cos²2θ-cos³2θ) dθ

=∫[0--->π] (1-3cos2θ+3/2(1+cos4θ)-sin³2θ) dθ

=∫[0--->π] (5/2-3cos2θ+3/2cos4θ-sin³2θ) dθ

=(5/2)θ-(3/2)sin2θ+(3/8)sin4θ-∫[0--->π] sin³2θdθ

=(5/2)θ-(3/2)sin2θ+(3/8)sin4θ+1/2∫[0--->π] sin²2θd(cos2θ)

=(5/2)θ-(3/2)sin2θ+(3/8)sin4θ+1/2∫[0--->π] (1-cos²2θ)d(cos2θ)

=(5/2)θ-(3/2)sin2θ+(3/8)sin4θ+1/2cos2θ-1/6cos³2θ |[0--->π]

=5π/2