连结DF
∵∠ACB=90°CB=3 AC=4
∴AB = 5 ,
∵D是AB的中点
∴AD = DB = DF = 5/2
∵CH ⊥ AB
∴CH = AC * BC / AB = 12/5 ,AH = AC*AC / AB = 16/5
∴DH = AH - AD = 16/5 - 5/2 = 7/10
∵CF平分∠ACB
∴∠ACF = ∠BCF = 45°
∴弧AF = 弧BF
∴DF ⊥ AB
∴CF = √[(CH+DF)^2 + DH^2] = √[(12/5 +5/2)^2 + (7/10)^2] = (7√2) / 2