(1)∵ 4 S n =
a 2n +2 a n +1 ,∴当n≥2时, 4 S n-1 =
a 2n-1 +2 a n-1 +1 .
两式相减得 4 a n =
a 2n -
a 2n-1 +2 a n -2 a n-1 ,
∴(a n+a n-1)(a n-a n-1-2)=0,
∵a n>0,∴a n-a n-1=2,
又 4 S 1 =
a 21 +2 a 1 +1 ,∴a 1=1,
∴{a n}是以a 1=1为首项,d=2为公差的等差数列.
∴a n=2n-1;
(2)由(1)知 S n =
(1+2n-1)n
2 = n 2 ,
∴ S m = m 2 , S k = k 2 , S p = p 2 ,
于是
1
S m +
1
S p -
2
S k =
1
m 2 +
1
p 2 -
2
k 2 =
k 2 ( p 2 + m 2 )-2 m 2 p 2
m 2 p 2 k 2
=
(
m+p
2 ) 2 ( p 2 + m 2 )-2 m 2 p 2
m 2 p 2 k 2 ≥
mp×2pm-2 m 2 p 2
m 2 p 2 k 2 =0 ,
∴
1
S m +
1
S p ≥
2
S k ;
(3)结论成立,证明如下:
设等差数列{a n}的首项为a 1,公差为d,则 S n =n a 1 +
n(n-1)
2 d=
n( a 1 + a n )
2 ,
于是 S m + S p -2 S k =m a 1 +
m(m-1)
2 d+p a 1 +
p(p-1)
2 d-[2k a 1 +k(k-1)d]
= (m+p) a 1 +
m 2 + p 2 -m-p
2 d-(2k a 1 + k 2 d-kd) ,
将m+p=2k代入得, S m + S p -2 S k =
(m-p) 2
4 d≥0 ,
∴S m+S p≥2S k,
又 S m S p =
mp( a 1 + a m )( a 1 + a p )
4 =
mp[
a 21 +( a m + a p ) a 1 + a m a p ]
4 ≤
(
m+p
2 ) 2 [
a 21 +2 a 1 a k + (
a m + a p
2 ) 2 ]
4
=
k 2 ( a 1 2 +2 a 1 a k +
a 2k )
4 =
k 2 ( a 1 + a k ) 2
4 =
S 2k ,
∴
1
S m +
1
S p =
S m + S p
S m S p ≥
2 S k
S 2k =
2
S k .