设数列{a n }的各项均为正数,前n项和为S n ,已知 4 S n = a 2n +2 a n +1(n∈ N *
1个回答

(1)∵ 4 S n =

a 2n +2 a n +1 ,∴当n≥2时, 4 S n-1 =

a 2n-1 +2 a n-1 +1 .

两式相减得 4 a n =

a 2n -

a 2n-1 +2 a n -2 a n-1 ,

∴(a n+a n-1)(a n-a n-1-2)=0,

∵a n>0,∴a n-a n-1=2,

又 4 S 1 =

a 21 +2 a 1 +1 ,∴a 1=1,

∴{a n}是以a 1=1为首项,d=2为公差的等差数列.

∴a n=2n-1;

(2)由(1)知 S n =

(1+2n-1)n

2 = n 2 ,

∴ S m = m 2 , S k = k 2 , S p = p 2 ,

于是

1

S m +

1

S p -

2

S k =

1

m 2 +

1

p 2 -

2

k 2 =

k 2 ( p 2 + m 2 )-2 m 2 p 2

m 2 p 2 k 2

=

(

m+p

2 ) 2 ( p 2 + m 2 )-2 m 2 p 2

m 2 p 2 k 2 ≥

mp×2pm-2 m 2 p 2

m 2 p 2 k 2 =0 ,

1

S m +

1

S p ≥

2

S k ;

(3)结论成立,证明如下:

设等差数列{a n}的首项为a 1,公差为d,则 S n =n a 1 +

n(n-1)

2 d=

n( a 1 + a n )

2 ,

于是 S m + S p -2 S k =m a 1 +

m(m-1)

2 d+p a 1 +

p(p-1)

2 d-[2k a 1 +k(k-1)d]

= (m+p) a 1 +

m 2 + p 2 -m-p

2 d-(2k a 1 + k 2 d-kd) ,

将m+p=2k代入得, S m + S p -2 S k =

(m-p) 2

4 d≥0 ,

∴S m+S p≥2S k

又 S m S p =

mp( a 1 + a m )( a 1 + a p )

4 =

mp[

a 21 +( a m + a p ) a 1 + a m a p ]

4 ≤

(

m+p

2 ) 2 [

a 21 +2 a 1 a k + (

a m + a p

2 ) 2 ]

4

=

k 2 ( a 1 2 +2 a 1 a k +

a 2k )

4 =

k 2 ( a 1 + a k ) 2

4 =

S 2k ,

1

S m +

1

S p =

S m + S p

S m S p ≥

2 S k

S 2k =

2

S k .