设数列{a n }的各项均为正数,前n项和为S n ,已知 4 S n = a 2n +2 a n +1(n∈ N *
1个回答

(1)∵ 4 S n =

a 2n +2 a n +1 ,

∴当n≥2时, 4 S n-1 =

a 2n-1 +2 a n-1 +1 .

两式相减得 4 a n =

a 2n -

a 2n-1 +2 a n -2 a n-1 ,

∴(a n+a n-1)(a n-a n-1-2)=0

∵a n>0,∴a n-a n-1=2,

又 4 S 1 =

a 21 +2 a 1 +1 ,∴a 1=1

∴{a n}是以a 1=1为首项,d=2为公差的等差数列.

∴a n=a 1+(n-1)d=2n-1;

(2)由(1)知 S n =

(1+2n-1)n

2 = n 2 ,

假设正整数k满足条件,

则(k 2 2=[2(k+2048)-1] 2

∴k 2=2(k+2048)-1,

解得k=65;

(3)证明:由 S n = n 2 得: S m = m 2 , S k = k 2 , S p = p 2

于是

1

S m +

1

S p -

2

S k =

1

m 2 +

1

p 2 -

2

k 2 =

k 2 ( p 2 + m 2 )-2 m 2 p 2

m 2 p 2 k 2

∵m、k、p∈N *,m+p=2k,

k 2 ( p 2 + m 2 )-2 m 2 p 2

m 2 p 2 k 2

=

(

m+p

2 ) 2 ( p 2 + m 2 )-2 m 2 p 2

m 2 p 2 k 2 ≥

mp×2pm-2 m 2 p 2

m 2 p 2 k 2 =0 .

1

S m +

1

S p ≥

2

S k .