|a|^2=2-2cosα=4sin(α/2)^2,α∈(0,π/2),故:α/2∈(0,π/4)
即:sin(α/2)>0,故:|a|=2sin(α/2)
cos=a·b/(|a|*|b|)=(3/2-cosα)/(2sin(α/2))
=(1/2+2sin(α/2)^2)/(2sin(α/2))=1/(4sin(α/2))+sin(α/2)
≥2sqrt(1/4)=1,即:cos只能等于1,即:=0
此时:sin(α/2)=1/(4sin(α/2)),即:sin(α/2)^2=1/4
即:sin(α/2)=1/2,即:α/2=π/6,即:α=π/3
即:a=(sqrt(3)/2,1/2),故:a·b=sqrt(3)cosβ/2+sinβ/2=1
即:sin(β+π/3)=1,β+π/3∈(π/3,5π/6)
故:β+π/3=π/2,即:β=π/6