已知空间向量a=(sinα-1,1),向量b=(1,1-cosα),向量a乘向量b=1/5,α∈(0,π/2)
1个回答

1

a·b=(sinα-1,1)·(1,1-cosα)=sinα-1+1-cosα

=sinα-cosα=1/5

即:1-sin(2α)=1/25

即:sin(2α)=24/25

cosα^2+(1/5+cosα)^2=1

即:25cosα^2+5cosα-12=0

故:cosα=3/5或-4/5

α∈(0,π/2),故:cosα=3/5

sinα=4/5

2

f(x)=5cos(2x-α)+cos2x

=5cos(2x)cosα+5sin(2x)sinα+cos(2x)

=4cos(2x)+4sin(2x)

=4√2sin(2x+π/4)

最小正周期:T=π

对称中心:2x+π/4=kπ

即:x=kπ/2-π/8,k∈Z

故对称中心:(kπ/2-π/8,0),k∈Z

3

x∈[-11π/24,-5π/24]

即:2x+π/4∈[-2π/3,-π/6]

故:sin(2x+π/4)∈[-1,-1/2]

故:f(x)∈[-4√2,-2√2]