已知可导函数是偶函数,则其导函数是不是奇函数?
6个回答

设 f(x)为可导的偶函数.f(x)=f(-x)

g(x)为f(x)的导函数.

对于任意的自变量位置 x0

g(x0) = lim[f(x0+dx)-f(x0)]/dx

g(-x0) = lim[f(-x0+dx)-f(-x0)]/dx = lim[f(x0-dx)-f(x0))/dx

f(x)可导,其左右导数相等.

即:lim[f(x0+dx)-f(x0)]/dx = lim[f(x0)-f(x0-dx)]/dx

上面这个等式中,左端就是 g(x0)的表达式,而右端即为 -g(-x0)的表达式.

即 g(x0) = - g(-x0)

x0 具备任意性,因此 g(x) = - g(-x)

即在 f(x)是可导偶函数前提下,其导函数是奇函数.