已知数列{a n }中,a 1 =3,a 2 =5,S n 为其前n项和,且满足S n +S n-2 =2S n-1 +
1个回答

(1)由 S n + S n-2 =2 S n-1 + 2 n-1 得 a n = a n-1 + 2 n-1 (n≥3,n∈N*) ,

∵a 2=5,∴当n≥3时,a n=a 2+(a 3-a 2)+(a 4-a 3)+…+(a n-a n-1)=5+2 2+2 3+…+2 n-1=2 n+1,

经验证a 1=3,a 2=5也符合上式,

∴ a n = 2 n +1(n∈ N * ) ;

(2)由(1)可得 b n =

n

a n -1 =

n

2 n ,

∴ T n =

1

2 +

2

2 2 +

3

2 3 +…+

n

2 n ① ⇒

1

2 T n =

1

2 2 +

2

2 3 +…+

n-1

2 n +

n

2 n+1 ②,

①-②有:

1

2 T n =

1

2 +

1

2 2 +

1

2 3 +…+

1

2 n -

n

2 n+1 =1-

1

2 n -

n

2 n+1 ,

∴ T n =2-

n+2

2 n ;

(3)∵ f(x)= 2 x-1 , c n =

1

a n a n+1 ,

∴ c n f(n)=

2 n-1

( 2 n +1)( 2 n+1 +1) =

1

2 (

1

2 n +1 -

1

2 n+1 +1 )(n∈N*) ,

∴Q n=c 1f(1)+c 2f(2)+…+c nf(n)

=

1

2 [(

1

2 1 +1 -

1

2 2 +1 )+(

1

2 2 +1 -

1

2 3 +1 )+…+(

1

2 n +1 -

1

2 n+1 +1 )]

=

1

2 (

1

1+2 -

1

2 n+1 +1 )<

1

2 ×

1

3 =

1

6 .