设数列的{an}前n项和为Sn 且满足2a(n)= 3Sn-5/2S(n-1)-2(n>=2) a(1)=2.(1) 求
2个回答

2a(n)= 3Sn-5/2S(n-1)-2

即2[Sn-S(n-1)]=3Sn-(5/2)S(n-1)-2

Sn=(1/2)S(n-1)+2

Sn-4=(1/2)[S(n-1)-4]

所以{Sn-4}是公比为1/2的等比数列

首项=S1-4=2-4=-2

所以Sn-4=(-2)*(1/2)^(n-1)=

故Sn=-2/2^(n-1)+4

S(n-1)=-2/2^(n-2)+4

所以通项公式an=Sn-S(n-1)=1/2^(n-2)

log2 Sn=log2 [4-1/2^(n-2)]=2-log2 (1-1/2^n)

log2 S(n+2)=log2 [4-1/2^n]=2-log2 [1-1/2^(n+2)]

log2 S(n+1)=log2 [4-1/2^(n-1)]=2-log2 [1-1/2^(n+1)]

log2 Sn+log2 Sn=4-log2 (1-1/2^n)[1-1/2^(n+2)]

2log2 S(n+1)=4-2log2 [1-1/2^(n+1)]=4-2log2 [1-1/2^(n+1)]^2

要使不等式成立,只需 [1-1/2^(n+1)]^2>(1-1/2^n)[1-1/2^(n+2)]

即1-1/2^n+1/2^(2n+2)>1-1/2^n-1/2^(n+2)+1/2^(2n+2)

亦即-1/2^n>-1/2^n-1/2^(n+2)

显然成立

得证.