(1)n=1时,a1=S1=2-1/2^0=2-1=1
n≥2时,an=Sn-S(n-1)
=[2-1/2^(n-1)]-[2-1/2^(n-2)]=1/2^(n-1)
n=1时,a1=1/2^0=1,成立
∴an=1/2^(n-1)
(2)Tn=log(2)(a1)+log(2)(a2)+...+log(2)(an)
=0-1-2-3-4-..-(n-1)
=-(n-1+1)(n-1)/2
=-(n-1)n/2
1/T1+1/T2+...+1/Tn
=-[0+2/(1×2)+2/(2×3)+...+2/(n-1)n]
=-2[1-1/2+1/2-1/3+..+1/(n-1)-1/n]
=-2(1-1/n)
=-2+2/n>-2