Sn=n(n+1)/2×an
Sn-1=n(n-1)/2×a(n -1) (n≥2)
an= n(n+1)/2×an -n(n-1)/2×a(n -1)
所以 (n+2)(n-1)an=n(n-1)a(n-1)
所以an/a(n-1)=n/(n+2)
a2/a1=2/4
a3/a2=3/5
a4/a3=4/6
a5/a4 =5/7
.
.
a(n-1)/a(n-2)=(n-1)/(n+1)
an/a(n-1)=n/(n+2)
an/a1=a2/a1*a3/a2a*4/a3.a(n-1)/a(n-2)*an/a(n-1)=2/4*3/5*4/6.*(n-1)/n*n/(n+2)=2*3/【(n+2)(1+n)】=6/(n²+3n+2)
所以 an=a1*6/(n²+2n)=1/(n²+3n+2) n≥2
当n=1时 a1=1/(1+3+2)=1/6
an=a1*6/(n²+2n)=1/(n²+3n+2)