类比“两角和与差的正弦、余弦公式”的形式,对于给定的两个函数S(x)=[e^x-e^(-x)]/2,C(x)=[e^x+
收藏:
0
点赞数:
0
评论数:
0
1个回答

选B

S(x)C(y)+C(x)S(y)=[e^x-e^(-x)]/2*[e^y+e^(-y)]/2 +[e^x+e^(-x)]/2*[e^y-e^(-y)]/2

=[e^(x+y)+e^(x-y)-e^(-x+y)-e^(-x-y)]/4+[e^(x+y)-e^(x-y)+e^(-x+y)-e^(-x-y)]/4

=[e^(x+y)-e^(-x-y)]/2=S(x+y)

其他也类似

正确的是

①S(x+y)=S(x)C(y)+C(x)S(y);

②S(x-y)=S(x)C(y)-C(x)S(y);

③C(x+y)=C(x)C(y)+S(x)S(y);

④C(x-y)=C(x)C(y)-S(x)S(y);

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识