解题思路:因为ABCD是正方形,所以AB=AD,∠ABC=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△AED,所以AF=DE=4,BF=AE=3,则EF的长可求.
∵ABCD是正方形
∴AB=AD,∠ABC=∠BAD=90°
∵∠ABC+∠ABF=∠BAD+∠DAE
∴∠ABF=∠DAE
在△AFB和△AED中
∠ABF=∠DAE,∠AFB=∠AED,AB=AD
∴△AFB≌△AED
∴AF=DE=4,BF=AE=3
∴EF=AF+AE=4+3=7.
故答案为:7.
点评:
本题考点: 正方形的性质;全等三角形的判定与性质.
考点点评: 此题把全等三角形的判定和正方形的性质结合求解.考查学生综合运用数学知识的能力.