用数学归纳法解比较简单.
n=1时,a1+a1=1 a1=1/2
n=2时,a1a2+a2=1 a2=1/(1+a1)=1/(1+1/2)=2/3
假设当n=k (k∈N+)时,ak=k/(k+1) 则当n=k+1时,
a1a2...ak+ak=1 a1a2...ak=1-ak
a1a2...aka(k+1)+a(k+1)=1
(1-ak)a(k+1)+a(k+1)=1
a(k+1)(2-ak)=1
a(k+1)=1/(2-ak)=1/[2-k/(k+1)]=(k+1)/[2(k+1)-k]=(k+1)/(2k+2-k)=(k+1)/(k+2)=(k+1)/[(k+1)+1]
同样满足.
综上,得an=n/(n+1)