已知 f(x)=2lnx+ ax x+1 (x>0) .
1个回答

(1)当a=-8时,f(x)=2lnx-

8x

x+1 ,x>0,

则 f ′ (x)=

2

x -

8

(x+1 ) 2 =

2(x-1 ) 2

x(x+1 ) 2 ≥0,

∴f(x)在定义域上单调递增.

(2)证明:∵ f ′ (x)=

2

x +

a

(x+1 ) 2

=

2 x 2 +(4+a ) 2 +2

x(x+1 ) 2 ,

∵f(x)在定义域上有两个极值点x 1,x 2(x 1≠x 2),

∴f′(x)=0有两个不相等的正实数根x 1,x 2

x 1 + x 2 =-

4+a

2 >0

x 1 x 2 =1>0

△=(4+a ) 2 -16>0 ,

而f(x 1)+f(x 2)=2lnx 1+

a x 1

x 1 +1 +2lnx 2+

a x 2

x 2 +1

= 2ln( x 1 x 2 )+a(

x 1

x 1 +1 +

x 2

x 2 +1 )

=2ln(x 1x 2)+a•

2 x 1 x 2 + x 1 + x 2

x 1 x 2 + x 1 + x 2 +1 =a,

f(x)-2lnx

x (x+1)=a ,

∴ f( x 1 )+f( x 2 )≥

f(x)+2

x -2 等价于

f(x)-2lnx

x (x+1)≥

f(x)+2

x -2 =

f(x)-2(x-1)

x ,

也就是要证明:对任意x>0,有lnx≤x-1,

令g(x)=lnx-x+1,(x>0),

由于g(1)=0,并且 g ′ (x)=

1

x -1 ,

当x>1时,g′(x)<0,则g(x)在(1,+∞)上为减函数;

当0<x<1时,g′(x)>0,则g(x)在(0,1)上为增函数,

∴g(x)在(0,+∞)上有最大值g(1)=0,即g(x)≤0,

故 f( x 1 )+f( x 2 )≥

f(x)+2

x -2 .