设PE⊥BC于E,PF⊥AC于F,
易证:△BEP~△PFA
BE/PE=PF/AF
设PE=x,PF=y
则:BE=BC-CE=BC-PF=3-y
AF=AC-CF=AC-PE=4-x
所以,(3-y)/x=y/(4-x)
(3-y)(4-x)=xy
12-4y-3x+xy=xy
3x+4y=12
x=4-4y/3
xy=(4-4y/3)y
=-y^2/3+4y
=-(4y^2-12y+9)/3+3
=-(2y-3)^2/3+3
所以,2y-3=0,y=3/2时,有最大值3
即:
P到AC,BC的距离乘积的最大值为 3