证:
(1)当n=1时,左边=1,右边=1,成立
(2)假设当n=k时,有1+2+3+----+k=k(k+1)/2,
则当n=k+1时,有:
1+2+3+----+k+(k+1)
=k(k+1)/2+(k+1)
=[k(k+1)+2(k+1)]/2
=(k+1)(k+2)/2
所以,当n=k+1时,也成立
综上所述,不论n为何正整数,1+2+3+----+n=n(n+1)/2都成立.
证:
(1)当n=1时,左边=1,右边=1,成立
(2)假设当n=k时,有1+2+3+----+k=k(k+1)/2,
则当n=k+1时,有:
1+2+3+----+k+(k+1)
=k(k+1)/2+(k+1)
=[k(k+1)+2(k+1)]/2
=(k+1)(k+2)/2
所以,当n=k+1时,也成立
综上所述,不论n为何正整数,1+2+3+----+n=n(n+1)/2都成立.
最新问答: 有人的地方就有是非 的英语翻译 因为背痛所以他停止了踢足球 英语翻译 when 引导的宾语从句是主现从将吗,还是什么 a/b>0和ab>0一样吗? 英语翻译翻译:But as he comes from a village ,the headmaster who wa 写日记的日期是不是要顶格? 1、自然数115中含有两个数字1,那么从1到1000这1000个自然数中一共有多少个数字1? 找一些类似《道德经》这样的名著,要古文,有哲理的,多给几本. 为什么在车上物体是垂直落下 2012数学黄冈小状元18页.13页,12页,6页第6.急 为什么光速是不变的为什么许多书上都说无论你是以什么作为参照物 光速都是恒定的 这到底是为什么 爱因斯坦当时怎么会把它作为 电功和电功率都表示了电能转化为其他形式的能的快慢这句话对么? 帽子和鞋共70元,两顶帽子等于三双鞋的价格, (1+√x)^100dx的不定积分 用半径为2的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的容积是 细胞膜的结构特点是具有一定的流动性,下列能反应该特点的是 除去混在Na2CO3粉末中的少量NaHCO3 如图,在平面直角坐标系中,一次函数 的图象与x轴、y轴分别 用绳子测量楼房的高度,把绳子折成相等的5段来测量,绳子比楼房高出6米…… k乘以e的x次方总体再取倒数,求这个式子的一阶和二阶导数?
相关问答: 规律