梯形ABCD中,AD ∥CB,对角线AC,BD相交于点O,设梯形ABCD的面S,△AOD,...
2个回答

∵AD∥BC,∴S(△ABD)=S(△ACD),∴S(△AOD)+S(△AOB)=S(△AOD)+S(△COD),

∴S(△AOB)=S(△COD)=S3.

∴S1+S2+2S3=S.······①

∵AD∥BC,∴AO/CO=DO/BO,∴(AO/CO)(BO/DO)=1.

显然有:S3/S1=BO/DO、S3/S2=AO/CO,∴(S3/S1)(S3/S2)=1,∴S3^2=S1S2,

∴√S1√S2=S3.······②

由①、②,得:S1+2√S1√S2+S2=S,∴(√S1+√S2)^2=S,∴√S1+√S2=√S.······③

由②、③,结合韦达定理可知:√S1、√S2是方程x^2-√Sx+S3=0的两实数根.