a(1)=1,
a(2)=2,
a(n+2) = [2 + cos(PI)][a(n)-1] + 3 = [2-1][a(n)-1] +3= a(n) + 2,
a(2n+1) = a(2n-1+2) = a(2n-1) + 2,
{a(2n-1)}是首项为a(1)=1,公差为2的等差数列.
a(2n-1) = 1 + 2(n-1) = 2n-1.
a(2n+2) = a(2n)+2,
{a(2n)}是首项为a(2)=2,公差为2的等差数列.
a(2n) = 2 + 2(n-1) = 2n.
综合,有,
a(n) = n.