已知数列《an》满足:a1=1.A2=2,且an+2=(2+cosπ)(an-1)+3,n∈nж
收藏:
0
点赞数:
0
评论数:
0
1个回答

a(1)=1,

a(2)=2,

a(n+2) = [2 + cos(PI)][a(n)-1] + 3 = [2-1][a(n)-1] +3= a(n) + 2,

a(2n+1) = a(2n-1+2) = a(2n-1) + 2,

{a(2n-1)}是首项为a(1)=1,公差为2的等差数列.

a(2n-1) = 1 + 2(n-1) = 2n-1.

a(2n+2) = a(2n)+2,

{a(2n)}是首项为a(2)=2,公差为2的等差数列.

a(2n) = 2 + 2(n-1) = 2n.

综合,有,

a(n) = n.

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识