已知数列{an}满足a1=1.a2=2,(a(n+1)+an)/an=(a(n+2)-an+1)/an+1 n∈N* 求
2个回答

由题意不妨构造数列{bn},使得bn=a(n+1)/an

则由a1=1.a2=2得:bn=2

[a(n+1)+an]/an=[a(n+2)-a(n+1)]/an+1

所以(bn) +1=b(n+1) -1

即b(n+1) -bn=2

易知数列{bn}是首项为2,公差为2的等差数列

则bn=b1 +(n-1)*2=2n

又(b1)*(b2)*(b3)*...*[b(n-1)]*(bn)

=[(a2)/(a1)]*[(a3)/(a2)]*[(a4)/(a3)]*...*[(an)/a(n-1)][a(n+1)/(an)]

=a(n+1)/a1

所以a(n+1)/a1

=(b1)*(b2)*(b3)*...*[b(n-1)]*(bn)

=2*4*6*...*(2n)

=(2的n次方)*n!(注:其中 n!=1*2*3*...*n,它是指从1连乘到n的积,称为n的阶乘)

则a2011=a1*(2的2010次方)*2010!=(2的2010次方)*2010!