(2014•河西区三模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<[π/2],x∈R)的图象的一部
1个回答

解题思路:(Ⅰ)由图象知,A、T的值,求出ω及φ的值,即得f(x)的解析式;

(Ⅱ)由三角恒等变换,化简函数y,求出它的最小正周期与最值.

(Ⅰ)由图象知,A=2,

∵[2π/ω]=8,∴ω=[π/4],

∴f(x)=2sin([π/4]x+φ);

∵函数f(x)的图象过点(1,2),

∴[π/4]×1+φ=[π/2]+2kπ,

∵|φ|<[π/2],∴φ=[π/4]

∴f(x)=2sin([π/4]x+[π/4]);

(Ⅱ)由题意,函数y=2sin([π/4]x+[π/4])+2sin[[π/4](x+2)+[π/4]]

=2sin([π/4]x+[π/4])+2cos([π/4]x+[π/4])

=2

2cos[π/4]x,

∴最小正周期是8,

ymax=2

2,ymin=-2

2.

点评:

本题考点: 由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的周期性及其求法.

考点点评: 本题考查了三角函数的图象与性质的应用问题,解题时还应用了三角函数的恒等变换公式,数形结合思想等,是基础题.