已知各项均为正数的数列{a n }的前n项和为S n ,且S n ,a n , 1 2 成等差数列,
1个回答

(1)由S n,a n

1

2 成等差数列,可得 2 a n = S n +

1

2 ,∴ a 1 =

1

2 ,a 2=1

(2)由 2 a n = S n +

1

2 可得,2S n=4a n-1(n≥1),∴2S n-1=4a n-1-1(n≥2)

∴两式相减得2a n=(4a n-1)-(4a n-1-1)=4a n-4a n-1,即a n=2a n-1(n≥2),

∴数列{a n}是以

1

2 为首项,以2为公比的等比数列,

∴ a n =

1

2 × 2 n-1 = 2 n-2 (n∈N *

(3)由题意可得, C n =(4-2n)×(

1

2 ) n-2

T n=C 1+C 2+…+C n

= 2×(

1

2 ) -1 +0×(

1

2 ) 0 +(-2)×(

1

2 ) 1 +…+(4-2n)× (

1

2 ) n-2

1

2 T n =2×(

1

2 ) 0 +0×(

1

2 ) 1 +…+(4-2n)× (

1

2 ) n-1

错位相减可得,

1

2 T n =2n×(

1

2 ) n-1

T n =4n×(

1

2 ) n-1