a+b+c=1
(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc=1
a^2+b^2+c^2=2 => ab+ac+bc= -1/2
(a+b+c)^3=a^3+b^3+c^3+3(ba^2+ca^2+ab^2+ac^2+bc^2+cb^2)+6abc=1 (1)
(a+b+c)(ab+ac+bc)=ba^2+ca^2+ab^2+ac^2+bc^2+cb^2+3abc=1*(-1/2)= -1/2 (2)
结合(1)(2)得 3+(-3/2)- 3abc=1 => abc= -5/6
(a^2+b^2+c^2)^2=a^4+b^4+c^4+2(ab)^2+2(ac)^2+2(bc)^2=4 (3)
(ab+ac+bc)^2=(ab)^2+(ac)^2+(bc)^2 + 2bca^2+2acb^2+2abc^2
=(ab)^2+(ac)^2+(bc)^2 + 2abc(a+b+c) =1/4 (4)
结合(3)(4)得 a^4+b^4+c^4+ 2(1/4-2*(-5/6)*1)=4 => a^4+b^4+c^= 1/6