解题思路:首先连接EC,由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠E=∠B,又由AE是⊙O的直径与∠B=∠EAC,根据半圆(或直径)所对的圆周角是直角,即可求得∠ACE=90°,∠E=45°,然后利用三角函数中的正弦,即可求得AC的长.
连接EC,
∵∠E与∠B是
AC对的圆周角,
∴∠E=∠B,
∵∠B=∠EAC,
∴∠E=∠EAC,
∵AE是⊙O的直径,
∴∠ACE=90°,
∴∠E=∠EAC=45°,
∵AE=10cm,
∴AC=AE•sin45°=10×
2
2=5
2(cm).
∴AC的长为5
2cm.
点评:
本题考点: 圆周角定理.
考点点评: 此题考查了圆周角定理、等腰直角三角形的性质以及三角函数等知识.此题难度不大,解题的关键是准确作出辅助线,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等与半圆(或直径)所对的圆周角是直角定理的应用.