一道高一数学函数题目.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|小于π\2)在同一个周期内,当x=π\4时,y
2个回答

函数y=Asin(ωx+φ)(A>0,ω>0,|φ|小于π2)在同一个周期内,当x=π4时,y取最大值2,当x=7π12时,y取最小值-2.

最大值=2,最小值=-2 所以A=2

则半个周期T/2=7π/12-π/4=π/3

T=2π/3 所以 w=3

f(x)=2sin(3x+φ)

代入点 (π/4,2)

则 sin(3π/4+φ)=1 3π/4+φ=π/2 所以φ=-π/4

所以

(1)f(x)=2sin(3x-π/4)

(2)若x∈[0,2π],

且f(x)=√3,

sin(3x-π/4)=√3/2

3x-π/4=2kπ+π/3或3x-π/4=2kπ+2π/3

x=2kπ/3+7π/36或x=2kπ/3+11π/36 k∈Z

2kπ/3+7π/36∈[0,2π] 或x=2kπ/3+11π/36∈[0,2π]

24kπ/36+7π/36x∈[0,2π] 24kπ/36+11π/36∈[0,2π]

k=0 x0=7π/36 k=0 x3=11π/36

k=1 x1=31π/36 k=1 x4=35π/36

(3)若函数f(x)满足方程f(x)=a(0<a<2,)求在[0,2π]内的所有实数根之和

画图可知 在[0,2π]内方程f(x)=a(0<a<2)有6个根

x1+x2=2*π/4=π/2

x3+x4=2*(π/4+2π/3)=π/2+4π/3

x5+x6=2*(π/4+4π/3)=π/2+8π/3

所以所有实数根之和=3π/2+4π=11π/4