S(n+1)=Sn/(Sn +2)
1/S(n+1)=(Sn +2)/Sn=2/Sn +1
1/S(n+1) +1=2/Sn +2=2(1/Sn +1)
[1/S(n+1) +1]/(1/Sn +1)=2,为定值.
1/S1 +1=1/a1 +1=1/1 +1=2,数列{1/Sn +1}是以2为首项,2为公比的等比数列.
1/Sn +1=2ⁿ
Sn=1/(2ⁿ-1)
n≥2时,
an=Sn-S(n-1)=1/(2ⁿ-1) -1/[2^(n-1) -1]
=1/(2ⁿ-1) -2/(2ⁿ-2)
=-2ⁿ/[(2ⁿ-1)(2ⁿ-2)]
{an}的通项公式为
an=1 n=1
-2ⁿ/[(2ⁿ-1)(2ⁿ-2)] n≥2