△ABC中,cosB为sinA,sinC的等比中项,sinB为cosA,cosC的等差中项,则∠B等于多少
1个回答

解:由sinB为cosA,cosC的等差中项得

2sinB=cosA+cosC

→4·sinB/2·cosB/2=2·cos(A+C)/2·cos(A-C)/2

→4·sinB/2·cosB/2=2·cos(π-B)/2·cos(A-C)/2

→4·sinB/2·cosB/2=2·sinB/2·cos(A-C)/2

→2cosB/2=cos(A-C)/2

→8(cosB/2)^2-1=2[cos(A-C)/2]^2-1

→cos(A-C)=4cosB+3…………………①

又由cosB为sinA,sinC的等比中项得

(cosB)^2=sinA·sinB

→(cosB)^2=-1/2×[cos(A+C)-cos(A-C)]

→(cosB)^2=-1/2×[cos(π-B)-cos(A-C)]

→(cosB)^2=1/2×[cosB+cos(A-C)]……………②

把①式代入②式得

(cosB)^2=1/2×[cosB+4cosB+3]

→2×(cosB)^2-5cosB-3=0

→cosB=-1/2 (舍弃cosB=3)

所以,B=120°