ABC中,sinA,cosB,sinC成等比数列,cosA,sinB,cosC成等差数列,求B.
收藏:
0
点赞数:
0
评论数:
0
1个回答

2sinB=cosA+cosC →4·sinB/2·cosB/2=2·cos(A+C)/2·cos(A-C)/2 →4·sinB/2·cosB/2=2·cos(π-B)/2·cos(A-C)/2 →4·sinB/2·cosB/2=2·sinB/2·cos(A-C)/2 →2cosB/2=cos(A-C)/2 →8(cosB/2)^2-1=2[cos(A-C)/2]^2-1 →cos(A-C)=4cosB+3…………………① (cosB)^2=sinA·sinB →(cosB)^2=-1/2×[cos(A+C)-cos(A-C)] →(cosB)^2=-1/2×[cos(π-B)-cos(A-C)] →(cosB)^2=1/2×[cosB+cos(A-C)]……………② 把①式代入②式得 (cosB)^2=1/2×[cosB+4cosB+3] →2×(cosB)^2-5cosB-3=0 →cosB=-1/2 (舍弃cosB=3) 所以,B=120°

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识