已知椭圆W的中心在原点,焦点在x轴上,离心率为 (根号6)/3,两条准线间的距离为6.椭圆W的左焦点为F,
1个回答

e=c/a=(根号6)/3 准线:x=-a^2/c 和 x=+a^2/c 2(a^2/c)=6 a^2=3c c=2 a^2=6 b^2=2

w椭圆方程:x^2/6+y^2/2=1

(2)分析:要证明CF→=λFB→(λ∈R);只要证明CF的斜率K等于FB的斜率K° ,因为相等,说明平行,说明向量共线,有CF→=λFB→ 的关系式.

证:设 A(x1,y1) B(x2,y2) C(x1,-y1) (因为A与C关于X轴对称).

过M(-3,0)的直线方程为(y-0)/(x+3)=1/n x=ny-3 代入椭圆方程:x^2+3y^2=6

(n^2+3)y^2-6ny+3=0 y1=[3n-√(6n^2-9)]/[n^2+3] x1=ny1-3=--[n√(6n^2-9)+9]/[n^2+3]

y2=[3n+√(6n^2-9)]/[n^2+3] x2=[ n√(6n^2-9)--9]]/[n^2+3] F(-2,0)

CF的K=[-y1-0]/[x1+2]

=[-3n+√(6n^2-9)]/[(2n^2-3)-n√(6n^2-9)]

=√3(√(2n^2-3)-n√3)/[√(2n^2-3)(√(2n^2-3)-n√(3)]

=√3/√(2n^2-3)

FB 的K°=y2/(x2+2)

=[3n+√3(2n^2-3)]/[(2n^2-3)+n√3(2n^2-3)]

=√3/√(2n^2-3)

K=K° 证明斜率相等,CFB三点共线,CF→=λFB→(λ∈R);

(3)求△MBC面积S的最大值 △MBC面积S=0.5*MF*(y2-y3)=0.5*[-2-(-3)]*[y2+y1]

=0.5[6n/(n^2+3)=3n/[n^2+3]=3/(n+3/n)